
Modelling, Simulation
and Control in MATLAB

Hans-Petter Halvorsen

https://www.halvorsen.blog

Modelling, Simulation and
Control in MATLAB

University of South-Eastern Norway

MATLAB
Modelling, Simulation & Control

Hans-Petter Halvorsen, 2022.08.17

http://www.halvorsen.blog

http://www.halvorsen.blog/

ii

Preface

Copyright You cannot distribute or copy this document without

permission from the author. You cannot copy or link to this document

directly from other sources, web pages, etc. You should always link to the

proper web page where this document is located, typically

http://www.halvorsen.blog

In this MATLAB Course, you will learn basic MATLAB and how to use

MATLAB in Control and Simulation applications. An introduction to

Simulink and other Tools will also be given.

MATLAB is a tool for technical computing, computation and visualization in

an integrated environment. MATLAB is an abbreviation for MATrix

LABoratory, so it is well suited for matrix manipulation and problem

solving related to Linear Algebra, Modelling, Simulation and Control

applications.

This is a self-paced course based on this document and some short videos

on the way. This document contains lots of examples and self-paced tasks

that the users will go through and solve on their own. The user may go

through the tasks in this document in their own pace and the instructor

will be available for guidance throughout the course.

The MATLAB Course consists of 3 parts:

1. Introduction to MATLAB

2. Modelling, Simulation and Control

3. Simulink and Advanced Topics

In Part 2 of the course, you will learn how to use MATLAB in Modelling,

Control and Simulation.

You must go through MATLAB Course – Part 1: Introduction to MATLAB

before you start.

The course consists of lots of Tasks you should solve while reading this

course manual and watching the videos referred to in the text.

http://www.halvorsen.blog/

iii

 Make sure to bring your headphones for the videos in this

course. The course consists of several short videos that will give you an

introduction to the different topics in the course.

Prerequisites

You should be familiar with undergraduate-level mathematics and have

experience with basic computer operations.

What is MATLAB? MATLAB is a tool for technical computing, computation

and visualization in an integrated environment. MATLAB is an abbreviation

for MATrix LABoratory, so it is well suited for matrix manipulation and

problem solving related to Linear Algebra.

MATLAB is developed by The MathWorks. MATLAB is a short-term for

MATrix LABoratory. MATLAB is in use world-wide by researchers and

universities. For more information, see www.mathworks.com

For more information about MATLAB, etc., please visit

http://www.halvorsen.blog

Online MATLAB Resources:

MATLAB:

http://www.halvorsen.blog/documents/programming/matlab/

MATLAB Basics:

http://www.halvorsen.blog/documents/programming/matlab/matlab_basics.php

Modelling, Simulation and Control with MATLAB:

http://www.halvorsen.blog/documents/programming/matlab/matlab_mic.php

http://www.mathworks.com/
http://www.halvorsen.blog/
http://www.halvorsen.blog/documents/programming/matlab/
http://www.halvorsen.blog/documents/programming/matlab/matlab_basics.php
http://www.halvorsen.blog/documents/programming/matlab/matlab_mic.php

iv

MATLAB Videos:

http://www.halvorsen.blog/documents/video/matlab_basics_videos.php

MATLAB for Students:

http://www.halvorsen.blog/documents/teaching/courses/matlab.php

On these web pages you find video solutions, complete step by step

solutions, downloadable MATLAB code, additional resources, etc.

http://www.halvorsen.blog/documents/video/matlab_basics_videos.php
http://www.halvorsen.blog/documents/teaching/courses/matlab.php

v

Table of Contents

Preface .. ii

Table of Contents.. v

1 Introduction ... 1

2 Differential Equations and ODE Solvers .. 2

2.1 ODE Solvers in MATLAB .. 4

Task 1: Bacteria Population .. 5

Task 2: Passing Parameters to the model..................................... 6

Task 3: ODE Solvers ... 7

2.1.1 Higher order differential equations 8

Task 4: 2. order differential equation .. 14

3 Discrete Systems .. 16

3.1 Discretization .. 16

Task 5: Discrete Simulation ... 19

Task 6: Discrete Simulation – Bacteria Population 19

Task 7: Simulation with 2 variables ... 20

3.2 Code Optimization ... 20

4 Numerical Techniques .. 25

4.1 Interpolation ... 25

Task 8: Interpolation ... 27

4.2 Curve Fitting ... 28

4.2.1 Linear Regression ... 28

Task 9: Linear Regression .. 30

vi Table of Contents

MATLAB Course - Part II: Modelling, Simulation and Control

4.2.2 Polynomial Regression .. 31

Task 10: Polynomial Regression... 33

Task 11: Model fitting... 33

4.3 Numerical Differentiation .. 34

Task 12: Numerical Differentiation ... 38

4.3.1 Differentiation on Polynomials.. 39

Task 13: Differentiation on Polynomials 40

Task 14: Differentiation on Polynomials 40

4.4 Numerical Integration .. 40

Task 15: Numerical Integration ... 44

4.4.1 Integration on Polynomials .. 45

Task 16: Integration on Polynomials .. 45

5 Optimization ... 46

Task 17: Optimization .. 49

Task 18: Optimization - Rosenbrock's Banana Function 49

6 Control System Toolbox ... 51

7 Transfer Functions ... 53

7.1 Introduction .. 53

Task 19: Transfer function .. 55

7.2 Second order Transfer Function ... 56

Task 20: 2.order Transfer function ... 56

Task 21: Time Response ... 57

7.3 Analysis of Standard Functions .. 58

Task 22: Integrator .. 58

Task 23: 1. order system .. 58

Task 24: 2. order system .. 59

vii Table of Contents

MATLAB Course - Part II: Modelling, Simulation and Control

Task 25: 2. order system – Special Case 60

8 State-space Models ... 61

8.1 Introduction .. 61

8.2 Tasks ... 63

Task 26: State-space model .. 63

Task 27: Mass-spring-damper system 63

Task 28: Block Diagram .. 64

8.3 Discrete State-space Models ... 65

Task 29: Discretization ... 66

9 Frequency Response .. 67

9.1 Introduction .. 67

9.2 Tasks ... 70

Task 30: 1. order system .. 70

Task 31: Bode Diagram .. 71

9.3 Frequency response Analysis ... 72

9.3.1 Loop Transfer Function ... 72

9.3.2 Tracking Transfer Function .. 72

9.3.3 Sensitivity Transfer Function.. 73

Task 32: Frequency Response Analysis 74

9.4 Stability Analysis of Feedback Systems 75

Task 33: Stability Analysis .. 77

10 Additional Tasks ... 78

Task 34: ODE Solvers... 78

Task 35: Mass-spring-damper system 78

Task 36: Numerical Integration ... 79

Task 37: State-space model .. 80

viii Table of Contents

MATLAB Course - Part II: Modelling, Simulation and Control

Task 38: lsim .. 80

Appendix A – MATLAB Functions ... 83

Numerical Techniques ... 83

Solving Ordinary Differential Equations .. 83

Interpolation... 83

Curve Fitting ... 83

Numerical Differentiation .. 84

Numerical Integration .. 84

Optimization .. 84

Control and Simulation ... 85

1

1 Introduction

Additional Resources, Videos, etc. are available from:

http://www.halvorsen.blog/documents/programming/matlab

Part 2: “Modelling, Simulation and Control” consists of the following

topics:

• Differential Equations and ODE Solvers

• Discrete Systems

• Numerical Techniques

o Interpolation

o Curve Fitting

o Numerical Differentiation

o Numerical Integration

• Optimization

• Control System Toolbox

• Transfer functions

• State-space models

• Frequency Response

http://www.halvorsen.blog/documents/programming/matlab

2

2 Differential Equations

and ODE Solvers

MATLAB have lots of built-in functionality for solving differential equations.

MATLAB includes functions that solve ordinary differential equations (ODE)

of the form:

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0

MATLAB can solve these equations numerically.

Higher order differential equations must be reformulated into a system of

first order differential equations.

Note! Different notation is used:

𝑑𝑦

𝑑𝑡
= 𝑦′ = �̇�

This document will use these different notations interchangeably.

Not all differential equations can be solved by the same technique, so

MATLAB offers lots of different ODE solvers for solving differential

equations, such as ode45, ode23, ode113, etc.

Example:

Given the following differential equation:

�̇� = 𝑎𝑥

where 𝑎 = −
1

𝑇
 ,where 𝑇 is the time constant

Note! �̇� =
𝑑𝑥

𝑑𝑡

The solution for the differential equation is found to be:

𝑥(𝑡) = 𝑒𝑎𝑡𝑥0

We shall plot the solution for this differential equation using MATLAB.

3 Differential Equations and ODE

Solvers

MATLAB Course - Part II: Modelling, Simulation and Control

Set 𝑇 = 5 and the initial condition 𝑥(0) = 1.

We will create a script in MATLAB (.m file) where we plot the solution 𝑥(𝑡)

in the time interval 0 ≤ 𝑡 ≤ 25

The Code is as follows:

T = 5;

a = -1/T;

x0 = 1;

t = [0:1:25]

x = exp(a*t)*x0;

plot(t,x);

grid

This gives the following Results:

[End of Example]

This works fine, but the problem is that we first have to find the solution

to the differential equation – instead we can use one of the built-in solvers

for Ordinary Differential Equations (ODE) in MATLAB. In the examples and

tasks below we will learn how we can use these built-in ODE solvers.

There are different functions, such as ode23 and ode45.

4 Differential Equations and ODE

Solvers

MATLAB Course - Part II: Modelling, Simulation and Control

2.1 ODE Solvers in MATLAB

All of the ODE solver functions (ode23, ode45, etc.) share a syntax that

makes it easy to try any of the different numerical methods, if it is not

apparent which is the most appropriate. To apply a different method to

the same problem, simply change the ODE solver function name. The

simplest syntax, common to all the solver functions, is:

[t,y] = solver(odefun,tspan,y0,options,…)

where “solver” is one of the ODE solver functions (ode23, ode45, etc.).

Note! If you don’t specify the resulting array [t, y], the function create a

plot of the result.

‘odefun’ is the function handler, which is a “nickname” for your function

that contains the differential equations.

Example:

Given the following differential equation:

�̇� = 𝑎𝑥

where 𝑎 = −
1

𝑇
 ,where 𝑇 is the time constant

We use 𝑇 = 5 and the initial condition 𝑥(0) = 1.

We use the ode23 solver in MATLAB for solving the differential equation

(“runmydiff.m”):

tspan = [0 25];

x0 = 1;

[t,x] = ode23(@mydiff,tspan,x0);

plot(t,x)

Where @mydiff is defined as a function like this (“mydiff.m”):

function dx = mydiff(t,x)

a = -1/5;

dx = a*x;

Note! You have to implement it in 2 different m. files, one m. file where

you define the differential equation you are solving, and another .m file

where you solve the equation using the ode23 solver.

5 Differential Equations and ODE

Solvers

MATLAB Course - Part II: Modelling, Simulation and Control

This gives the same results as shown in the previous example above and

MATLAB have solved the differential equation for us (numerically).

 [End of Example]

Task 1: Bacteria Population

In this task we will simulate a simple model of a bacteria population in a

jar.

The model is as follows:

birth rate=bx

death rate = px2

Then the total rate of change of bacteria population is:

�̇� = 𝑏𝑥 − 𝑝𝑥2

Set b=1/hour and p=0.5 bacteria-hour

Note! �̇� =
𝑑𝑥

𝑑𝑡

→ Simulate (i.e., create a plot) the number of bacteria in the jar after 1

hour, assuming that initially there are 100 bacteria present.

How many bacteria are present after 1 hour?

6 Differential Equations and ODE

Solvers

MATLAB Course - Part II: Modelling, Simulation and Control

[End of Task]

2.1.1 Passing Arguments to the function

In a differential equation we have different parameters that we may want

to change.

Task 2: Passing Parameters to the model

Given the following system:

�̇� = 𝑎𝑥 + 𝑏

where 𝑎 = −
1

𝑇
 ,where 𝑇 is the time constant

In this case we want to pass 𝑎 and 𝑏 as parameters, to make it easy to

be able to change values for these parameters.

We set initial condition 𝑥(0) = 1 and 𝑇 = 5. We can set 𝑏 = 1.

The function for the differential equation is:

function dx = mysimplediff(t,x,param)

% My Simple Differential Equation

a = param(1);

b = param(2);

dx = a*x+b;

Then we solve and plot the equation using this code:

tspan = [0 25];

x0 = 1;

a = -1/5;

b = 1;

param = [a b];

[t,y] = ode45(@mysimplediff, tspan, x0,[], param);

plot(t,y)

By doing this, it is very easy to changes values for the parameters 𝑎 and

𝑏 without changing the code for the differential equation.

7 Differential Equations and ODE

Solvers

MATLAB Course - Part II: Modelling, Simulation and Control

Note! We need to use the 5. argument in the ODE solver function for this.

The 4. argument is for special options and is normally set to “[]”, i.e., no

options.

The result from the simulation is:

→ Write the code above

Try also this techniqueon the following differential equation:

�̇� = 𝑏𝑥 − 𝑝𝑥2

Set b=1/hour and p=0.5 bacteria-hour

You should also read more about the different solvers (ode34, ode 45,

etc.) that exists in the Help system in MATLAB

[End of Task]

Task 3: ODE Solvers

Use the ode23 function to solve and plot the results of the following

differential equation in the interval [𝑡0, 𝑡𝑓]:

𝒘′ + (𝟏. 𝟐 + 𝒔𝒊𝒏𝟏𝟎𝒕)𝒘 = 𝟎, 𝑡0 = 0, 𝑡𝑓 = 5, 𝑤(𝑡0) = 1

8 Differential Equations and ODE

Solvers

MATLAB Course - Part II: Modelling, Simulation and Control

Note! 𝑤′ =
𝑑𝑤

𝑑𝑡

[End of Task]

2.1.2 Multiple 1. order Differential

Equations

In real life we typically have higher order differential equations, or we

have a set of 1. order differential equations that describe a given system.

How can we solve such equations in MATLAB?

Example:

Given the differential equations:

𝑑𝑦

𝑑𝑡
= 𝑥

𝑑𝑥

𝑑𝑡
= −𝑦

In MATLAB you define a function for these differential equations:

function dy = mydiff(t,y)

dy(1) = y(2);

dy(2) = -y(1);

dy = [dy(1); dy(2)];

Note! Since the numbers of equations is more than one, we need to use

vectors!!

Using the ode45 function gives the following code:

[t,y] = ode45(@mydiff, [-1,1], [1,1]);

plot(t,y)

title('solution of dy/dt=x and dx/dt=-y')

legend('y', 'x')

The equations are solved in the time span [−1, 1] with initial values [1, 1].

This gives the following plot:

9 Differential Equations and ODE

Solvers

MATLAB Course - Part II: Modelling, Simulation and Control

Note! To make it more clearly, we can rewrite the equations (setting 𝑥1 =

𝑥, 𝑥2 = 𝑦):

𝑑𝑥1

𝑑𝑡
= −𝑥2

𝑑𝑥2

𝑑𝑡
= 𝑥1

Where we have the vector 𝑥 = [
𝑥1
𝑥2
] and �̇� = [

�̇�1
�̇�2
]

or MATLAB “syntax”: 𝑑𝑥𝑑𝑡 = �̇�

In MATLAB it is tempting to define these 2 differential equations like this:

dxdt1 = -x2;

dxdt2 = x1;

But if we have more than one differential equation (in this case we

have 2), we need to use vectors!

So, it needs be like this:

dxdt(1) = -x(2);

dxdt(2) = x(1);

The final code that implements the differential equations becomes

(“mydiff.m”):

10 Differential Equations and ODE

Solvers

MATLAB Course - Part II: Modelling, Simulation and Control

function dxdt = mydiff(t,x)

dxdt(1) = -x(2);

dxdt(2) = x(1);

dxdt = dxdt';

Note! The function mydiff must return a column vector, that’s why we

need to transpose it.

Then we use the ode solver to solve the differential equations

(“run_mydiff.m”):

tspan = [-1,1];

x0 = [1,1];

[t,x] = ode45(@mydiff, tspan, x0);

plot (t,x)

legend('x1', 'x2')

The solution will be the same.

[End of Example]

2.1.3 Higher order differential equations

Higher order differential equations must be reformulated into a system of

first order differential equations.

Example:

Given the following "Mass-spring-damper" system:

11 Differential Equations and ODE

Solvers

MATLAB Course - Part II: Modelling, Simulation and Control

Where t is the simulation time, F(t) is an external force applied to the

system, c is the damping constant of the spring, k is the stiffness of the

spring, m is a mass, and x(t) is the position of the mass.

The goal is to view the position x(t) of the mass m with respect to time t.

You can calculate the position by integrating the velocity of the mass. You

can calculate the velocity by integrating the acceleration of the mass. If

you know the force and mass, you can calculate this acceleration by using

Newton's Second Law of Motion, given by the following equation:

Force = Mass × Acceleration

Therefore,

Acceleration = Force / Mass

We can describe the system using a 2. order differential equation:

𝐹(𝑡) − 𝑐�̇�(𝑡) − 𝑘𝑥(𝑡) = 𝑚�̈�(𝑡)

Where �̇� is the first derivative of the position, which equals the velocity of

the mass. �̈� is the second derivative of the position, which equals the

acceleration of the mass.

We reformulate the differential equation so �̈� is alone on the left side.

�̈� = −
𝑘

𝑚
𝑥 −

𝑐

𝑚
�̇� +

1

𝑚
𝐹

Higher order differential equations must be reformulated into a system of

first order differential equations.

We set:

𝑥1 = 𝑥

𝑥2 = �̇� = �̇�1

This gives:

�̇�1 = 𝑥2

�̇�2 = �̈�

Finally:

12 Differential Equations and ODE

Solvers

MATLAB Course - Part II: Modelling, Simulation and Control

�̇�1 = 𝑥2

�̇�2 = −
𝑘

𝑚
𝑥1 −

𝑐

𝑚
𝑥2 +

1

𝑚
𝐹

Now we are ready to solve the system using MATLAB.

Below we present the MATLAB code.

First, we need to create a function for our differential equations

(mass_spring_damper_diff.m):

function dx = mass_spring_damper_diff(t,x)

k = 1;

m = 5;

c = 1;

F = 1;

dx = zeros(2,1); %Initialization

dx(1) = x(2);

dx(2) = -(k/m)*x(1)-(c/m)*x(2)+(1/m)*F;

Then, we can write a MATLAB script (simulate_mass_spring_damper.m)

that is using this function as part of the built-in ode solver:

clear

clc

tspan = [0 50];

x0 = [0;0];

[t,x] = ode23(@mass_spring_damper_diff,tspan,x0);

plot(t,x)

This gives the following plot:

13 Differential Equations and ODE

Solvers

MATLAB Course - Part II: Modelling, Simulation and Control

In the plot we see both 𝑥1 and 𝑥2. If we only want to plot 𝑥1, we can do

like this:

plot(t,x(:,2))

Improved solution:

For greater flexibility we want to be able to change the parameters k, m,

c, and F without changing the function, only changing the script. A better

approach would be to pass these parameters to the function instead.

The updated function becomes:

function dx = mass_spring_damper_diff2(t,x, param)

k = param(1);

m = param(2);

c = param(3);

F = param(4);

dx = zeros(2,1);

dx(1) = x(2);

dx(2) = -(k/m)*x(1) - (c/m)*x(2) + (1/m)*F;

The updated script becomes:

clear

14 Differential Equations and ODE

Solvers

MATLAB Course - Part II: Modelling, Simulation and Control

clc

close all

tspan = [0 50];

x0 = [0;0];

k = 1;

m = 5;

c = 1;

F = 1;

param = [k, m, c, F];

[t,x] = ode23(@mass_spring_damper_diff2,tspan,x0, [], param);

plot(t,x)

Then we can easily change the values k, m, c, and F.

[End of Example]

Task 4: 2. order differential equation

Use the ode23/ode45 function to solve and plot the results of the following

differential equation in the interval [𝑡0, 𝑡𝑓]:

(𝟏 + 𝒕𝟐)�̈� + 𝟐𝒕�̇� + 𝟑𝒘 = 𝟐, 𝑡0 = 0, 𝑡𝑓 = 5, 𝑤(𝑡0) = 0, �̇�(𝑡0) = 1

Note! �̈� =
𝑑2𝑤

𝑑𝑡2

Note! Higher order differential equations must be reformulated into a

system of first order differential equations.

Tip 1: Reformulate the differential equation so �̈� is alone on the left side.

Tip 2: Set:

𝑤 = 𝑥1

�̇� = 𝑥2

[End of Task]

Example:

Given the following differential equations:

15 Differential Equations and ODE

Solvers

MATLAB Course - Part II: Modelling, Simulation and Control

�̇�1 = −0.9𝑥1 + 0.1𝑥2 + 1

�̇�2 = −0.4𝑥2 + 0.8𝑥3 − 0.9

�̇�3 = −0.7𝑥1 − 0.1𝑥3

MATLAB:

function dxdt = my3orderdiff(t,x)

dxdt(1) = -0.9*x(1) + 0.1*x(2) + 1;

dxdt(2) = -0.4*x(2) + 0.8*x(3) - 0.9;

dxdt(3) = -0.7*x(1) - 0.1*x(3);

dxdt = dxdt';

and the Script for running the simulation:

clear

clc

tspan = [0,30];

x0 = [0,0,0];

[t,x] = ode23(@my3orderdiff, tspan, x0);

plot (t,x)

legend('x1', 'x2', 'x3')

[End of Example]

16

3 Discrete Systems

MATLAB has built-in powerful features for simulation of continuous

differential equations and dynamic systems.

Sometimes we want to or need to discretize a continuous system and then

simulate it in MATLAB.

When dealing with computer simulation, we need to create a discrete

version of our system. This means we need to make a discrete version of

our continuous differential equations. Actually, the built-in ODE solvers in

MATLAB use different discretization methods. Interpolation, Curve Fitting,

etc. is also based on a set of discrete values (data points or

measurements). The same with Numerical Differentiation and Numerical

Integration, etc.

Below we see a continuous signal vs the discrete signal for a given system

with discrete time interval 𝑇𝑠 = 0.1𝑠.

3.1 Discretization

To discretize a continuous model there are lots of different methods to

use. One of the simplest is Euler Forward method:

�̇� ≈
𝑥𝑘+1 − 𝑥𝑘

𝑇𝑠

17 Discrete Systems

MATLAB Course - Part II: Modelling, Simulation and Control

where 𝑇𝑠 is the sampling time.

Lots of other discretization methods do exists, such as “Euler backward”,

Zero Order Hold (ZOH), Tustin’s method, etc.

As shown in a previous chapter, MATLAB have lots of built-in functions for

solving differential equations numerically, but here we will create our own

discrete model.

Example:

Given the following differential equation:

�̇� = −𝑎𝑥 + 𝑏𝑢

Note!

�̇� is the same as
𝑑𝑥

𝑑𝑡

Where:

𝑥 - Process variable, e.g., Level, Pressure, Temperature, etc.

𝑢 - Input variable, e.g., Control Signal from the Controller

𝑎, 𝑏 - Constants

We start with finding the discrete differential equation.

We can use e.g., the Euler Approximation:

18 Discrete Systems

MATLAB Course - Part II: Modelling, Simulation and Control

�̇� ≈
𝑥𝑘+1 − 𝑥𝑘

𝑇𝑠

𝑇𝑠 - Sampling Interval

Then we get:

𝑥𝑘+1 − 𝑥𝑘

𝑇𝑠
= −𝑎𝑥𝑘 + 𝑏𝑢𝑘

This gives the following discrete differential equation:

𝑥𝑘+1 = (1 − 𝑇𝑠𝑎)𝑥𝑘 + 𝑇𝑠𝑏𝑢𝑘

Now we are ready to simulate the system

We set 𝑎 = 0.25, 𝑏 = 2 and 𝑢 = 1 (You can explore with other values on

your own)

The Code can be written as follows:

% Simulation of discrete model

clear, clc

% Model Parameters

a = 0.25;b = 2;

% Simulation Parameters

Ts = 0.1; %s

Tstop = 30; %s

uk = 1; % Step Response

x(1) = 0;

% Simulation

for k=1:(Tstop/Ts)

 x(k+1) = (1-a*Ts).*x(k) + Ts*b*uk;

end

% Plot the Simulation Results

k=0:Ts:Tstop;

plot(k,x)

grid on

This gives the following Results:

19 Discrete Systems

MATLAB Course - Part II: Modelling, Simulation and Control

[End of Example]

Task 5: Discrete Simulation

Given the following differential equation:

�̇� = 𝑎𝑥

where 𝑎 = −
1

𝑇
 , where 𝑇 is the time constant

Note! �̇� =
𝑑𝑥

𝑑𝑡

Find the discrete differential equation and plot the solution for this system

using MATLAB.

Set 𝑇 = 5 and the initial condition 𝑥(0) = 1.

Create a script in MATLAB (.m file) where we plot the solution 𝑥(𝑘).

[End of Task]

Task 6: Discrete Simulation – Bacteria Population

In this task we will simulate a simple model of a bacteria population in a

jar.

20 Discrete Systems

MATLAB Course - Part II: Modelling, Simulation and Control

The model is as follows:

birth rate = bx

death rate = px2

Then the total rate of change of bacteria population is:

�̇� = 𝑏𝑥 − 𝑝𝑥2

Set b=1/hour and p=0.5 bacteria-hour

 We will simulate the number of bacteria in the jar after 1 hour, assuming

that initially there are 100 bacteria present.

→ Find the discrete model using the Euler Forward method by hand and

implement and simulate the system in MATLAB using a For Loop.

[End of Task]

Task 7: Simulation with 2 variables

Given the following system

𝑑𝑥1

𝑑𝑡
= −𝑥2

𝑑𝑥2

𝑑𝑡
= 𝑥1

Find the discrete system and simulate the discrete system in MATLAB.

Solve the equations, e.g., in the time span [−1 1] with initial values [1, 1].

[End of Task]

3.2 Code Optimization

Example:

When doing more advanced simulations, it is important that you spend

time optimization your code. In the examples and tasks above the

equations are quite simple, but when the equations become more

21 Discrete Systems

MATLAB Course - Part II: Modelling, Simulation and Control

complicated, or your simulation time increases, code optimization

becomes more important.

In the code example below the following simple differential equation will

be used:

�̇� = 𝑎𝑥 + 𝑏𝑢

But we will increase the simulation time dramatically compared to the

previous examples.

MATLAB Code 1;

clear, clc

tic

a=-10; b=0.5;

x=0; u=1;

dt=0.01;

N=1000000000;

X(1)=x;

for i=1:N

 X(i+1)=X(i)+dt*(a*X(i)+b*u);

end

toc

MATLAB Code 2:

clear, clc

tic

a=-10; b=0.5;

x=0; u=1;

dt=0.01;

N=1000000000;

X=zeros(N,1);

for i=1:N

 X(i+1)=X(i)+dt*(a*X(i)+b*u);

end

toc

MATLAB Code 3:

clear, clc

tic

22 Discrete Systems

MATLAB Course - Part II: Modelling, Simulation and Control

a=-10; b=0.5;

x=0; u=1;

dt=0.01;

N=1000000000;

X=zeros(N,1);

for i=1:N

 X(i)=x;

 x=x+dt*(a*x+b*u);

end

toc

Try the different code examples and note the execution time. Try with

different values of N, etc.

 [End of Example]

Example:

In the code example below the following simple differential equation will

be used:

�̇� = −𝑎𝑥 + 𝑏𝑢

MATLAB Code 1;

% Simulation of discrete model

clear, clc

% Model Parameters

a = 0.25;b = 2;

% Simulation Parameters

Ts = 0.01;

Tstop = 10000000;

x(1) = 0;

N = Tstop/Ts;

u = linspace(0,1,N);

% Simulation

tic

for k=1:N

 x(k+1) = (1-a*Ts).*x(k) + Ts*b*u(k);

end

toc

% Plot the Simulation Results

t=0:Ts:Tstop;

plot(t,x)

23 Discrete Systems

MATLAB Course - Part II: Modelling, Simulation and Control

grid on

MATLAB Code 2:

% Simulation of discrete model

clear, clc

% Model Parameters

a = 0.25;b = 2;

% Simulation Parameters

Ts = 0.01;

Tstop = 10000000;

uk = 1;

N = Tstop/Ts;

u = linspace(0,1,N);

%Preallocation

x = zeros(N,1);

% Simulation

tic

for k=1:N

 x(k+1) = (1-a*Ts).*x(k) + Ts*b*u(k);

end

toc

% Plot the Simulation Results

t=0:Ts:Tstop;

plot(t,x)

grid on

MATLAB Code 3:

% Simulation of discrete model

clear, clc

% Model Parameters

a = 0.25;b = 2;

% Simulation Parameters

Ts = 0.01;

Tstop = 10000000;

uk = 1;

x = 0;

X(1)=x;

N = Tstop/Ts;

u = rand(N,1);

u = linespace(0,1,N);

% Simulation

24 Discrete Systems

MATLAB Course - Part II: Modelling, Simulation and Control

X = zeros(N,1);

tic

for k=1:N

 x = (1-a*Ts)*x + Ts*b*u(k);

 X(k+1)=x;

end

toc

% Plot the Simulation Results

t=0:Ts:Tstop;

plot(t,X)

grid on

In general, it will be many ways to implement a given system in MATLAB,

we can use built in ODE solvers, we can use different discretization

methods, and we can optimize our code in other ways.

There is not a “best way” that can be used for all kind of systems. It will

be your responsibility to find the best solution for your system. That’s why

it is important that you know about different ways to do things, so you

can find the best solution in a given situation.

[End of Example]

25

4 Numerical Techniques

In the previous chapter we investigated how to solve differential equations

numerically, in this chapter we will take a closer look at some other

numerical techniques offered by MATLAB, such as interpolation, curve-

fitting, numerical differentiations and integrations.

4.1 Interpolation

Interpolation is used to estimate data points between two known points.

The most common interpolation technique is Linear Interpolation.

In MATLAB we can use the interp1 function.

Example:

Given the following data:

x y

0 15

1 10

2 9

3 6

4 2

5 0

We will find the interpolated value for 𝑥 = 3.5.

The following MATLAB code will do this:

x=0:5;

y=[15, 10, 9, 6, 2, 0];

plot(x,y ,'-o')

% Find interpolated value for x=3.5

new_x=3.5;

new_y = interp1(x,y,new_x)

The answer is 4, from the plot below we see this is a good guess:

26 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

[End of Example]

The default is linear interpolation, but there are other types available,

such as:

• linear

• nearest

• spline

• cubic

• etc.

Type “help interp1” to read more about the different options.

Example:

In this example we will use a spline interpolation on the same data as in

the example above.

x=0:5;

y=[15, 10, 9,6, 2, 0];

new_x=0:0.2:5;

new_y=interp1(x,y,new_x, 'spline')

plot(x,y, new_x, new_y, '-o')

27 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

The result is as we plot both the original point and the interpolated points

in the same graph:

We see this result in 2 different lines.

[End of Example]

Task 8: Interpolation

Given the following data:

Temperature, T [oC] Energy, u [KJ/kg]

100 2506.7

150 2582.8

200 2658.1

250 2733.7

300 2810.4

400 2967.9

500 3131.6

Plot u versus T. Find the interpolated data and plot it in the same graph.

Test out different interpolation types. Discuss the results. What kind of

interpolation is best in this case?

What is the interpolated value for u=2680.78 KJ/kg?

[End of Task]

28 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

4.2 Curve Fitting

In the previous section we found interpolated points, i.e., we found values

between the measured points using the interpolation technique. It would

be more convenient to model the data as mathematical function 𝑦 = 𝑓(𝑥).

Then we could easily calculate any data we want based on this model.

MATLAB has built-in curve fitting functions that allows us to create empiric

data model. It is important to have in mind that these models are good

only in the region we have collected data.

Here are some of the functions available in MATLAB used for curve fitting:

Function Description Example

polyfit P = POLYFIT(X,Y,N) finds the coefficients of a

polynomial P(X) of degree N that fits the data Y
best in a least-squares sense. P is a row vector
of length N+1 containing the polynomial

coefficients in descending powers, P(1)*X^N +
P(2)*X^(N-1) +...+ P(N)*X + P(N+1).

>>polyfit(x,y,1)

polyval Evaluate polynomial. Y = POLYVAL(P,X) returns

the value of a polynomial P evaluated at X. P is a
vector of length N+1 whose elements are the
coefficients of the polynomial in descending

powers. Y = P(1)*X^N + P(2)*X^(N-1) + ... +
P(N)*X + P(N+1)

These techniques use a polynomial of degree N that fits the data Y best in

a least-squares sense.

A polynomial is expressed as:

𝑝(𝑥) = 𝑝1𝑥
𝑛 + 𝑝2𝑥

𝑛−1 +⋯+ 𝑝𝑛𝑥 + 𝑝𝑛+1

where 𝑝1 , 𝑝2 , 𝑝3 , … are the coefficients of the polynomial.

MATLAB represents polynomials as row arrays containing coefficients

ordered by descending powers.

4.2.1 Linear Regression

Here we will create a linear model of our data on the form:

𝑦 = 𝑎𝑥 + 𝑏

This is a polynomial of 1. Order.

Example:

29 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

Given the following data:

x y

0 15

1 10

2 9

3 6

4 2

5 0

We will find the model on the form:

𝑦 = 𝑎𝑥 + 𝑏

We will use the polyfit function in MATLAB.

The following code will solve it:

x=[0, 1, 2, 3, 4 ,5];

y=[15, 10, 9, 6, 2 ,0];

n=1; % 1.order polynomial

p = polyfit(x,y,n)

The answer is:

ans =

 -2.9143 14.2857

This gives the following model:

𝑦 = −2.9143𝑥 + 14.2857

We can also plot the measured data and the model in the same plot:

x=[0, 1, 2, 3, 4 ,5];

y=[15, 10, 9, 6, 2 ,0];

n=1; % 1.order polynomial

p=polyfit(x,y,n);

a=p(1);

b=p(2);

ymodel=a*x+b;

plot(x,y,'o',x,ymodel)

This gives the following plot:

30 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

We see this gives a good model based on the data available.

[End of Example]

Task 9: Linear Regression

Given the following data:

Temperature, T [oC] Energy, u [KJ/kg]

100 2506.7

150 2582.8

200 2658.1

250 2733.7

300 2810.4

400 2967.9

500 3131.6

Plot u versus T.

Find the linear regression model from the data

𝑦 = 𝑎𝑥 + 𝑏

Plot it in the same graph.

[End of Task]

31 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

4.2.2 Polynomial Regression

In the previous section we used linear regression which is a 1. order

polynomial. In this section we will study higher order polynomials.

In polynomial regression we will find the following model:

𝑦(𝑥) = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1 +⋯+ 𝑎𝑛−1𝑥 + 𝑎𝑛

Example:

Given the following data:

x y

0 15

1 10

2 9

3 6

4 2

5 0

We will found the model of the form:

𝑦(𝑥) = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1 +⋯+ 𝑎𝑛−1𝑥 + 𝑎𝑛

We will use the polyfit and polyval functions in MATLAB and compare the

models using different orders of the polynomial.

We will investigate models of 2. order, 3. order, 4. order and 5. order. We

have only 6 data points, so a model with order higher than 5 will make no

sense.

We use a For loop to create models of 2, 3, 4 and 5. order.

The code is as follows:

x=[0, 1, 2, 3, 4 ,5];

y=[15, 10, 9, 6, 2 ,0];

for n=2:5 %From order 2 to 5

 p=polyfit(x,y,n)

 ymodel=polyval(p,x);

 subplot(2,2,n-1)

 plot(x,y,'o',x,ymodel)

 title(sprintf('Model of order %d', n));

end

32 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

The polyfit gives the following polynomials:

p =

 0.0536 -3.1821 14.4643

p =

 -0.0648 0.5397 -4.0701 14.6587

p =

 0.1875 -1.9398 6.2986 -9.4272 14.9802

p =

 -0.0417 0.7083 -4.2083 10.2917 -11.7500 15.0000

Using the values, we get the following models:

𝑦2(𝑥) ≈ 0.05𝑥
2 − 3.2𝑥 + 14.5

𝑦3(𝑥) ≈ −0.065𝑥
3 + 0.5𝑥2 − 4𝑥 + 14.7

𝑦4(𝑥) ≈ 0.2𝑥
4 − 1.9𝑥3 + 6.3𝑥2 − 9.4𝑥 + 15

𝑦5(𝑥) ≈ −0.04𝑥
5 + 0.7𝑥4 − 4.2𝑥3 + 10.3𝑥2 − 11.8𝑥 + 15

This gives the following results:

As expected, the higher order models match the data better and better.

Note! The fifth order model matches exactly because there were

only six data points available.

[End of Example]

33 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

Task 10: Polynomial Regression

Given the following data:

x y

10 23

20 45

30 60

40 82

50 111

60 140

70 167

80 198

90 200

100 220

→ Use the polyfit and polyval functions in MATLAB and compare the

models using different orders of the polynomial.

Use subplots and make sure to add titles, etc.

[End of Task]

Task 11: Model fitting

Given the following data:

Height, h[ft] Flow, f[ft^3/s]

0 0

1.7 2.6

1.95 3.6

2.60 4.03

2.92 6.45

4.04 11.22

5.24 30.61

→ Create a 1. (linear), 2. (quadratic) and 3.order (cubic) model. Which

gives the best model? Plot the result in the same plot and compare them.

Add xlabel, ylabel, title and a legend to the plot and use different line

styles so the user can easily see the difference.

[End of Task]

34 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

4.3 Numerical Differentiation

The derivative of a function 𝑦 = 𝑓(𝑥) is a measure of how y changes with

x.

Assume the following:

Then we have the following definition:

MATLAB is a numerical language and do not perform symbolic

mathematics (... well, that is not entirely true because there is Symbolic

Toolbox available for MATLAB, but this Toolkit will not be used in this

course).

MATLAB offers functions for numerical differentiation, e.g.:

Function Description Example

diff Difference and approximate derivative. DIFF(X),
for a vector X, is [X(2)-X(1) X(3)-X(2) ... X(n)-
X(n-1)].

>> dydx_num=diff(y)./diff(x);

35 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

polyder Differentiate polynomial. POLYDER(P) returns the

derivative of the polynomial whose coefficients are
the elements of vector P.

POLYDER(A,B) returns the derivative of
polynomial A*B.

>>p=[1,2,3];

>>polyder(p)

A numerical approach to the derivative of a function 𝑦 = 𝑓(𝑥) is:

𝑑𝑦

𝑑𝑥
=
∆𝑦

∆𝑥
=
𝑦2 − 𝑦1

𝑥2 − 𝑥1

This approximation of the derivative corresponds to the slope of each line

segment used to connect each data point that exists. An example is shown

below:

Example:

We will use Numerical Differentiation to find
𝑑𝑦

𝑑𝑥
 on the following function:

𝑦 = 𝑥2

based on the data points (x=-2:2):

x y

-2 4

-1 1

0 0

1 1

2 4

36 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

First, we will plot the data points together with the real function 𝑦 = 𝑥2

using the following code:

x=-2:0.1:2;

y=x.^2;

plot(x,y)

hold on

x=-2:2;

y=x.^2;

plot(x,y, '-oc')

This gives the following plot:

Then we want to find the derivative
𝑑𝑦

𝑑𝑥

We know that the exact solution is:

𝑑𝑦

𝑑𝑥
= 2𝑥

For the values given in the table we have:

37 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

We will use this to compare the results from the numerical differentiation

with the exact solution (see above).

The code is as follows:

x=-2:2;

y=x.^2;

dydx_num=diff(y)./diff(x);

dydx_exact=2*x;

dydx=[[dydx_num, NaN]', dydx_exact']

This gives the following results (left column is from the numerical

derivation, while the right column is from the exact derivation):

dydx =

 -3 -4

 -1 -2

 1 0

 3 2

 NaN 4

Note! NaN is added to the vector with numerical differentiation in

order to get the same length of the vectors.

If we plot the derivatives (numerical and exact), we get:

38 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

If we increase the number of data points (x=-2:0.1:2) we get a better

result:

[End of Example]

Task 12: Numerical Differentiation

Given the following equation:

𝑦 = 𝑥3 + 2𝑥2 − 𝑥 + 3

Find
𝑑𝑦

𝑑𝑥
 analytically (use “pen and paper”).

39 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

Define a vector x from -5 to +5 and use the diff function to approximate

the derivative y with respect to x (
∆𝑦

∆𝑥
).

Compare the data in a 2D array and/or plot both the exact value of
𝑑𝑦

𝑑𝑥
 and

the approximation in the same plot.

Increase number of data point to see if there are any difference.

Do the same for the following functions:

𝑦 = sin (𝑥)

𝑦 = 𝑥5 − 1

[End of Task]

4.3.1 Differentiation on Polynomials

A polynomial is expressed as:

𝑝(𝑥) = 𝑝1𝑥
𝑛 + 𝑝2𝑥

𝑛−1 +⋯+ 𝑝𝑛𝑥 + 𝑝𝑛+1

where 𝑝1 , 𝑝2 , 𝑝3 , … are the coefficients of the polynomial.

The differentiation of the Polynomial will be:

𝑝(𝑥)′ = 𝑝1𝑛𝑥
𝑛−1 + 𝑝2(𝑛 − 1)𝑥

𝑛−2 +⋯+ 𝑝𝑛

Example

Given the polynomial

𝑝(𝑥) = 2 + 𝑥3

We can rewrite the polynomial like this:

𝑝(𝑥) = 1 ∙ 𝑥3 + 0 ∙ 𝑥2 + 0 ∙ 𝑥 + 2

The polynomial is defined in MATLAB as:

>> p=[1, 0, 0, 2]

We know that: 𝑝′ = 3𝑥2

The code is as follows

>> p=[1, 0, 0, 2]

p =

40 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

 1 0 0 2

>> polyder(p)

ans =

 3 0 0

Which is correct, because

𝑝(𝑥)′ = 3 ∙ 𝑥2 + 0 ∙ 𝑥2 + 0

with the coefficients:

𝑝1 = 3, 𝑝2 = 0, 𝑝3 = 0

And this is written as a vector [3 0 0] in MATLAB.

[End of Example]

Task 13: Differentiation on Polynomials

Consider the following equation:

𝑦 = 𝑥3 + 2𝑥2 − 𝑥 + 3

Use Differentiation on the Polynomial to find
𝑑𝑦

𝑑𝑥

[End of Task]

Task 14: Differentiation on Polynomials

Find the derivative for the product:

(3𝑥2 + 6𝑥 + 9)(𝑥2 + 2𝑥)

Use the polyder(a,b) function.

Another approach is to use define is to first use the conv(a,b) function to

find the total polynomial, and then use polyder(p) function.

Try both methods, to see if you get the same answer.

[End of Task]

4.4 Numerical Integration

The integral of a function 𝑓(𝑥) is denoted as:

41 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

An integral can be seen as the area under a curve. Given 𝑦 = 𝑓(𝑥) the

approximation of the Area (A) under the curve can be found dividing the

area up into rectangles and then summing the contribution from all the

rectangles:

𝐴 = ∑(𝑥𝑖+1 − 𝑥𝑖) ∙ (𝑦𝑖+1 + 𝑦𝑖)/2

𝑛−1

𝑖=1

This is known as the trapezoid rule.

We approximate the integral by using n trapezoids formed by using

straight line segments between the points (𝑥𝑖−1, 𝑦𝑖−1) and (𝑥𝑖, 𝑦𝑖) for 1 ≤ 𝑖 ≤

𝑛 as shown in the figure below:

The area of a trapezoid is obtained by adding the area of a rectangle and

a triangle:

MATLAB offers functions for numerical integration, such as:

42 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

Function Description Example

diff Difference and approximate derivative. DIFF(X),

for a vector X, is [X(2)-X(1) X(3)-X(2) ... X(n)-
X(n-1)].

>> dydx_num=diff(y)./diff(x);

trapz Computes the approximate integral using the
trapezoidal method

>> I = trapz(x,y)

quad Numerically evaluate integral, adaptive Simpson
quadrature.
Q = QUAD(FUN,A,B) tries to approximate the

integral of calar-valued function FUN from A to B.
FUN is a function handle. The function Y=FUN(X)

should accept a vector argument X and return a
vector result Y, the integrand evaluated at each
element of X. Uses adaptive Simpson quadrature

method

>>

quadl Same as quad, but uses adaptive Lobatto
quadrature method

>>

polyint Integrate polynomial analytically. POLYINT(P,K)

returns a polynomial representing the integral of
polynomial P, using a scalar constant of

integration K.

>> I = polyint(p)

integral Numerically integrates function fun from xmin to
xmax

>> I = integral(fun,xmin,xmax)

Numerical Integration and Differentiation (MathWorks):

https://se.mathworks.com/help/matlab/numerical-integration-and-differentiation.html

Example:

Given the function:

𝑦 = 𝑥2

We know that the exact solution is:

∫ 𝑥2𝑑𝑥 =
𝑎3

3

𝑎

0

The integral from 0 to 1 is:

∫ 𝑥2𝑑𝑥 =
1

3

1

0

≈ 0.3333

https://se.mathworks.com/help/matlab/numerical-integration-and-differentiation.html

43 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

We will use the trapezoid rule and the diff function in MATLAB to solve the

numerical integral of 𝑥2 from 0 to 1.

The MATLAB code for this is:

x=0:0.1:1;

y=x.^2;

avg_y = y(1:length(x)-1) + diff(y)/2;

A = sum(diff(x).*avg_y)

Note!

The following two lines of code

avg_y = y(1:length(x)-1) + diff(y)/2;

A = sum(diff(x).*avg_y)

Implements this formula, known as the trapezoid rule:

𝐴 = ∑(𝑥𝑖+1 − 𝑥𝑖) ∙ (𝑦𝑖+1 + 𝑦𝑖)/2

𝑛−1

𝑖=1

The result from the approximation is:

A =

 0.3350

If we use the functions quad we get:

quad('x.^2', 0,1)

ans =

44 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

 0.3333

If we use the functions quadl we get:

quadl('x.^2', 0,1)

ans =

 0.3333

We also try the built-in trapz function:

A = trapz(x,y)

A =

 0.3350

The trapz function integrates numeric data rather than functional

expressions, so in general the expression does not need to be known to

use trapz on a matrix/vectors of data. In cases where the functional

expression is known, you can instead use integral, integral2, or integral3.

[End of Example]

Task 15: Numerical Integration

Use diff, quad, quadl, trapz and integral on the following equation:

𝑦 = 𝑥3 + 2𝑥2 − 𝑥 + 3

Find the integral of y with respect to x, evaluated from -1 to 1

Compare the different methods.

The exact solution is:

∫ (𝑥3 + 2𝑥2 − 𝑥 + 3)𝑑𝑥
𝑏

𝑎

= (
𝑥4

4
+
2𝑥3

3
−
𝑥2

2
+ 3𝑥)|

𝑎

𝑏

=
1

4
(𝑏4 − 𝑎4) +

2

3
(𝑏3 − 𝑎3) −

1

2
(𝑏2 − 𝑎2) + 3(𝑏 − 𝑎)

Compare the result with the exact solution.

Repeat the task for the following functions:

45 Numerical Techniques

MATLAB Course - Part II: Modelling, Simulation and Control

𝑦 = sin(𝑥)

𝑦 = 𝑥5 − 1

[End of Task]

4.4.1 Integration on Polynomials

A polynomial is expressed as:

𝑝(𝑥) = 𝑝1𝑥
𝑛 + 𝑝2𝑥

𝑛−1 +⋯+ 𝑝𝑛𝑥 + 𝑝𝑛+1

where 𝑝1 , 𝑝2 , 𝑝3 , … are the coefficients of the polynomial.

In MATLAB we can use the polyint function to perform integration on

polynomials. This function works the same way as the polyder function

which performs differentiation on polynomials.

Task 16: Integration on Polynomials

Consider the following equation:

𝑦 = 𝑥3 + 2𝑥2 − 𝑥 + 3

Find the integral of 𝑦 with respect to 𝑥 (∫𝑦𝑑𝑥) using MATLAB.

[End of Task]

46

5 Optimization

Optimization is important in control and simulation applications.

Optimization is based on finding the minimum of a given criteria function.

In MATLAB we can use the fminbnd and fminsearch functions. We will

take a closer look of how to use these functions.

Function Description Example

fminbnd X = FMINBND(FUN,x1,x2) attempts to find a
local minimizer X of the function FUN in the

interval x1 < X < x2. FUN is a function handle.
FUN accepts scalar input X and returns a scalar
function value F evaluated at X. FUN can be

specified using @.
FMINBND is a single-variable bounded

nonlinear function minimization.

>> x = fminbnd(@cos,3,4)

x =

 3.1416

fminsearch X = FMINSEARCH(FUN,X0) starts at X0 and
attempts to find a local minimizer X of the

function FUN. FUN is a function handle. FUN
accepts input X and returns a scalar function
value F evaluated at X. X0 can be a scalar,

vector or matrix. FUN can be specified using
@.
FMINSEARCH is a multidimensional

unconstrained nonlinear function minimization.

>> x = fminsearch(@sin,3)

x =

 4.7124

Example:

Given the following function:

𝑓(𝑥) = 𝑥2 + 2𝑥 + 1

We will use fminbnd to find the minimum of the function.

We plot the function:

47 Optimization

MATLAB Course - Part II: Modelling, Simulation and Control

We write the following MATLAB Script:

x = -5:1:5;

f = mysimplefunc(x);

plot(x, f)

x_min = fminbnd(@mysimplefunc, -5, 5)

where the function (mysimplefunc.m) is defined like this:

function f = mysimplefunc(x)

f = x.^2 + 2.*x + 1;

This gives:

x_min =

 -1

→ The minimum of the function is -1. This can also be shown from the

plot.

[End of Example]

Note! If a function has more than one variable, we need to use the

fminsearch function.

Example:

48 Optimization

MATLAB Course - Part II: Modelling, Simulation and Control

Given the following function:

𝑓(𝑥, 𝑦) = 2(𝑥 − 1)2 + 𝑥 − 2 + (𝑦 − 2)2 + 𝑦

We will use fminsearch to find the minimum of the function.

The MATLAB Code can be written like this:

[x,fval] = fminsearch(@myfunc, [1;1])

where the function is defined like this:

function f = myfunc(x)

f = 2*(x(1)-1).^2 + x(1) - 2 + (x(2)-2).^2 + x(2);

Note! The unknowns x and y is defined as a vector, i.e., 𝑥1 = 𝑥(1) = 𝑥, 𝑥2 =

𝑥(2) = 𝑦.

𝑥 = [
𝑥1
𝑥2
]

If there is more than one variable, you must do it this way.

This gives:

x =

 0.7500

 1.5000

fval =

 0.6250

→ The minimum is of the function is given by 𝑥 = 0.75 and 𝑦 = 1.5.

We can also plot the function:

clear,clc

[x,y] = meshgrid(-2:0.1:2, -1:0.1:3);

f = 2.*(x-1).^2 + x - 2 + (y-2).^2 + y;

figure(1)

surf(x,y,f)

figure(2)

mesh(x,y,f)

figure(3)

surfl(x,y,f)

shading interp;

49 Optimization

MATLAB Course - Part II: Modelling, Simulation and Control

colormap(hot);

For figure 3 we get:

[End of Example]

Task 17: Optimization

Given the following function:

𝑓(𝑥) = 𝑥3 − 4𝑥

→ Plot the function

→ Find the minimum for this function

[End of Task]

Task 18: Optimization - Rosenbrock's Banana Function

Given the following function:

𝑓(𝑥, 𝑦) = (1 − 𝑥)2 + 100(𝑦 − 𝑥2)2

This function is known as Rosenbrock's banana function.

The function looks like this:

50 Optimization

MATLAB Course - Part II: Modelling, Simulation and Control

The global minimum is inside a long, narrow, parabolic shaped flat valley.

To find the valley is trivial. To converge to the global minimum, however,

is difficult. But MATLAB will hopefully do the job for us.

Let’s see if MATLAB can do the job for us.

→ Plot the function

→ Find the minimum for this function

[End of Task]

51

6 Control System

Toolbox

There are available lots of additional toolboxes for MATLAB. Toolboxes are

specialized collections of M-files built for solving particular classes of

problems, e.g.,

• Control System Toolbox

• Signal Processing Toolbox

• Statistics Toolbox

• System identification Toolbox

• etc.

Here we will take a closer look at the “Control System Toolbox”.

Control System Toolbox builds on the foundations of MATLAB to provide

functions designed for control engineering. Control System Toolbox is a

collection of algorithms, written mostly as M-files, that implements

common control system design, analysis, and modeling techniques.

52 Control System Toolbox

MATLAB Course - Part II: Modelling, Simulation and Control

Convenient graphical user interfaces (GUIs) simplify typical control

engineering tasks. Control systems can be modeled as transfer functions,

in zero-pole-gain or state-space form, allowing you to use both classical

and modern control techniques. You can manipulate both continuous-time

and discrete-time systems. Conversions between various model

representations are provided. Time responses, frequency responses can

be computed and graphed. Other functions allow pole placement, optimal

control, and estimation. Finally, Control System Toolbox is open and

extensible. You can create custom M-files to suit your particular

application.

53

7 Transfer Functions

It is assumed you are familiar with basic control theory and transfer

functions, if not you may skip this chapter.

7.1 Introduction

Transfer functions are a model form based on the Laplace transform.

Transfer functions are very useful in analysis and design of linear dynamic

systems.

A general transfer function is on the form:

𝐻(𝑆) =
𝑦(𝑠)

𝑢(𝑠)

Where 𝑦 is the output and 𝑢 is the input.

First order Transfer Function:

A first order transfer function is given on the form:

𝐻(𝑠) =
𝑦(𝑠)

𝑢(𝑠)
=

𝐾

𝑇𝑠 + 1

there

𝐾 is the Gain

𝑇 is the Time constant

A 1.order transfer function with time-delay has the following characteristic

step response:

54 Transfer Functions

MATLAB Course - Part II: Modelling, Simulation and Control

A first order transfer function with time-delay has the following transfer

function:

𝐻(𝑠) =
𝑦(𝑠)

𝑢(𝑠)
=

𝐾

𝑇𝑠 + 1
𝑒−𝜏𝑠

Where 𝜏 is the time-delay.

A 1. order transfer function with time-delay has the following

characteristic step response:

MATLAB have several functions for creating and manipulation of transfer

functions:

Function Description Example

tf Creates system model in transfer function form.

You also can use this function to state-space
models to transfer function form.

>num=[1];

>den=[1, 1, 1];

>H = tf(num, den)

55 Transfer Functions

MATLAB Course - Part II: Modelling, Simulation and Control

pole Returns the locations of the closed-loop poles of a

system model.

>num=[1]

>den=[1,1]

>H=tf(num,den)

>pole(H)

zero Find the zeros

step Creates a step response plot of the system model.
You also can use this function to return the step
response of the model outputs. If the model is in

state-space form, you also can use this function
to return the step response of the model states.

This function assumes the initial model states are
zero. If you do not specify an output, this function
creates a plot.

>num=[1,1];

>den=[1,-1,3];

>H=tf(num,den);

>t=[0:0.01:10];

>step(H,t);

lsim Creates the linear simulation plot of a system

model. This function calculates the output of a
system model when a set of inputs excite the

model, using discrete simulation. If you do not
specify an output, this function creates a plot.

>t = [0:0.1:10]

>u = sin(0.1*pi*t)'

>lsim(SysIn, u, t)

conv Computes the convolution of two vectors or

matrices.

>C1 = [1, 2, 3];

>C2 = [3, 4];

>C = conv(C1, C2)

series Connects two system models in series to produce
a model SysSer with input and output connections

you specify

>Hseries = series(H1,H2)

feedback Connects two system models together to produce
a closed-loop model using negative or positive

feedback connections

>SysClosed = feedback(SysIn_1,

SysIn_2)

c2d Convert from continuous- to discrete-time models

d2c Convert from discrete- to continuous-time models

Before you start, you should use the Help system in MATLAB to read more

about these functions. Type “help <functionname>” in the Command

window.

Task 19: Transfer function

Use the tf function in MATLAB to define the transfer function above. Set

𝐾 = 2 and 𝑇 = 3.

Type “help tf” in the Command window to see how you use this function.

Example:

% Transfer function H=1/(s+1)

num = [1];

den = [1, 1];

H = tf(num, den)

[End of Task]

56 Transfer Functions

MATLAB Course - Part II: Modelling, Simulation and Control

7.2 Second order Transfer

Function

A second order transfer function is given on the form:

𝐻(𝑠) =
𝐾

(
𝑠
𝜔0
)
2
+ 2𝜁

𝑠
𝜔0
+ 1

Where

𝐾 is the gain

𝜁 zeta is the relative damping factor

𝜔0[rad/s] is the undamped resonance frequency.

Task 20: 2.order Transfer function

Define the transfer function using the tf function.

Set 𝐾 = 1,𝜔0 = 1

→ Plot the step response (use the step function in MATLAB) for different

values of 𝜁. Select 𝜁 as follows:

𝜁 > 1

𝜁 = 1

0 < 𝜁 < 1

𝜁 = 0

𝜁 < 0

Tip! From control theory we have the following:

57 Transfer Functions

MATLAB Course - Part II: Modelling, Simulation and Control

Figure: F. Haugen, Advanced Dynamics and Control - TechTeach, 2010.

So, you should get similar step responses as shown above.

[End of Task]

Task 21: Time Response

Given the following system:

𝐻(𝑠) =
𝑠 + 1

𝑠2 − 𝑠 + 3

Plot the time response for the transfer function using the step function.

Let the time-interval be from 0 to 10 seconds, e.g., define the time vector

like this:

 t=[0:0.01:10]

and then use the function step(H,t).

[End of Task]

58 Transfer Functions

MATLAB Course - Part II: Modelling, Simulation and Control

7.3 Analysis of Standard

Functions

Here we will take a closer look at the following standard functions:

• Integrator

• 1. Order system

• 2. Order system

Task 22: Integrator

The transfer function for an Integrator is as follows:

𝐻(𝑠) =
𝐾

𝑠

→Find the pole(s)

→ Plot the Step response: Use different values for 𝐾, e.g., 𝐾 = 0.2, 1, 5. Use

the step function in MATLAB.

[End of Task]

Task 23: 1. order system

The transfer function for a 1. order system is as follows:

𝐻(𝑠) =
𝐾

𝑇𝑠 + 1

→ Find the pole(s)

→ Plot the Step response. Use the step function in MATLAB.

• Step response 1: Use different values for 𝐾, e.g., 𝐾 = 0.5, 1, 2. Set

𝑇 = 1

• Step response 2: Use different values for 𝑇, e.g., 𝑇 = 0.2, 0.5, 1, 2, 4.

Set 𝐾 = 1

[End of Task]

59 Transfer Functions

MATLAB Course - Part II: Modelling, Simulation and Control

Task 24: 2. order system

The transfer function for a 2. order system is as follows:

𝐻(𝑠) =
𝐾𝜔0

2

𝑠2 + 2𝜁𝜔0𝑠 + 𝜔0
2
=

𝐾

(
𝑠
𝜔0
)
2
+ 2𝜁

𝑠
𝜔0
+ 1

Where

• 𝐾 is the gain

• 𝜁 zeta is the relative damping factor

• 𝜔0[rad/s] is the undamped resonance frequency.

→ Find the pole(s)

→ Plot the Step response: Use different values for 𝜁, e.g., 𝜁 = 0.2, 1, 2. Set

𝜔0 = 1 and K=1. Use the step function in MATLAB.

Tip! From control theory we have the following:

60 Transfer Functions

MATLAB Course - Part II: Modelling, Simulation and Control

Figure: F. Haugen, Advanced Dynamics and Control - TechTeach, 2010.

So, you should get similar step responses as shown above.

[End of Task]

Task 25: 2. order system – Special Case

Special case: When 𝜻 > 0 and the poles are real and distinct we

have:

𝐻(𝑠) =
𝐾

(𝑇1𝑠 + 1)(𝑇2𝑠 + 1)

We see that this system can be considered as two 1. order systems in

series.

𝐻(𝑠) = 𝐻1(𝑠)𝐻1(𝑠) =
𝐾

(𝑇1𝑠 + 1)
∙

1

(𝑇2𝑠 + 1)
=

𝐾

(𝑇1𝑠 + 1)(𝑇2𝑠 + 1)

Set 𝑇1 = 2 and 𝑇2 = 5

→ Find the pole(s)

→ Plot the Step response. Set K=1. Set 𝑇1 = 1 𝑎𝑛𝑑 𝑇2 = 0, 𝑇1 = 1 𝑎𝑛𝑑 𝑇2 =

0.05, 𝑇1 = 1 𝑎𝑛𝑑 𝑇2 = 0.1, 𝑇1 = 1 𝑎𝑛𝑑 𝑇2 = 0.25, 𝑇1 = 1 𝑎𝑛𝑑 𝑇2 = 0.5, 𝑇1 =

1 𝑎𝑛𝑑 𝑇2 = 1. Use the step function in MATLAB.

[End of Task]

61

8 State-space Models

It is assumed you are familiar with basic control theory and state-space

models, if not you may skip this chapter.

8.1 Introduction

A state-space model is a structured form or representation of a set of

differential equations. State-space models are very useful in Control

theory and design. The differential equations are converted in matrices

and vectors, which is the basic elements in MATLAB.

We have the following equations:

 �̇�1 = 𝑎11𝑥1 + 𝑎21𝑥2+ ⋯+ 𝑎𝑛1𝑥𝑛 + 𝑏11𝑢1 + 𝑏21𝑢2 +⋯+ 𝑏𝑛1𝑢𝑛

⋮

�̇�𝑛 = 𝑎1𝑚𝑥1 + 𝑎2𝑚𝑥2 +⋯+ 𝑎𝑛𝑚𝑥𝑛 + 𝑏1𝑚𝑢1 + 𝑏2𝑚𝑢2 +⋯+ 𝑏𝑛1𝑢𝑛

⋮

This gives on vector form:

[

�̇�1
�̇�2
⋮
�̇�𝑛

]

⏟
�̇�

= [

𝑎11 ⋯ 𝑎𝑛1
⋮ ⋱ ⋮
𝑎1𝑚 ⋯ 𝑎𝑛𝑚

]
⏟

𝐴

[

𝑥1
𝑥2
⋮
𝑥𝑛

]

⏟
𝑥

+ [
𝑏11 ⋯ 𝑏𝑛1
⋮ ⋱ ⋮
𝑏1𝑚 ⋯ 𝑏𝑛𝑚

]

⏟
𝐵

[

𝑢1
𝑢2
⋮
𝑢𝑛

]

⏟
𝑢

[

𝑦1
𝑦2
⋮
𝑦𝑛

]

⏟
𝑦

= [

𝑐11 ⋯ 𝑐𝑛1
⋮ ⋱ ⋮
𝑐1𝑚 ⋯ 𝑐𝑛𝑚

]
⏟

𝐶

[

𝑥1
𝑥2
⋮
𝑥𝑛

]

⏟
𝑥

+ [
𝑑11 ⋯ 𝑑𝑛1
⋮ ⋱ ⋮
𝑑1𝑚 ⋯ 𝑑𝑛𝑚

]

⏟
𝐷

[

𝑢1
𝑢2
⋮
𝑢𝑛

]

⏟
𝑢

This gives the following compact form of a general linear State-space

model:

�̇� = 𝐴𝑥 + 𝐵𝑢

62 State-space Models

MATLAB Course - Part II: Modelling, Simulation and Control

𝑦 = 𝐶𝑥 + 𝐷𝑢

Example:

Given the following equations:

�̇�1 = −
1

𝐴𝑡
𝑥2 +

1

𝐴𝑡
𝐾𝑝𝑢

�̇�2 = 0

These equations can be written on the compact state-space form:

[
�̇�1
�̇�2
] = [

0 −
1

𝐴𝑡
0 0

]

⏟
𝐴

[
𝑥1
𝑥2
] + [

𝐾𝑝

𝐴𝑡
0

]

⏟
𝐵

𝑢

𝑦 = [1 0]⏟
𝐶

[
𝑥1
𝑥2
]

[End of Example]

MATLAB have several functions for creating and manipulation of State-

space models:

Function Description Example

ss Constructs a model in state-space form. You also
can use this function to convert transfer function

models to state-space form.

>A = [1 3; 4 6];
>B = [0; 1];
>C = [1, 0];
>D = 0;
>sysOutSS = ss(A, B, C, D)

step Creates a step response plot of the system model.
You also can use this function to return the step

response of the model outputs. If the model is in
state-space form, you also can use this function to
return the step response of the model states. This

function assumes the initial model states are zero.
If you do not specify an output, this function

creates a plot.

>num=[1,1];

>den=[1,-1,3];

>H=tf(num,den);

>t=[0:0.01:10];

>step(H,t);

lsim Creates the linear simulation plot of a system
model. This function calculates the output of a
system model when a set of inputs excite the

model, using discrete simulation. If you do not
specify an output, this function creates a plot.

>t = [0:0.1:10]

>u = sin(0.1*pi*t)'

>lsim(SysIn, u, t)

c2d Convert from continuous- to discrete-time models

d2c Convert from discrete- to continuous-time models

Example:

% Creates a state-space model

A = [1 3; 4 6];

63 State-space Models

MATLAB Course - Part II: Modelling, Simulation and Control

B = [0; 1];

C = [1, 0];

D = 0;

SysOutSS = ss(A, B, C, D)

 [End of Example]

Before you start, you should use the Help system in MATLAB to read more

about these functions. Type “help <functionname>” in the Command

window.

8.2 Tasks

Task 26: State-space model

Implement the following equations as a state-space model in MATLAB:

�̇�1 = 𝑥2

2�̇�2 = −2𝑥1−6𝑥2+4𝑢1+8𝑢2

𝑦 = 5𝑥1+6𝑥2+7𝑢1

→ Find the Step Response

→ Find the transfer function from the state-space model using MATLAB

code.

[End of Task]

Task 27: Mass-spring-damper system

Given a mass-spring-damper system:

64 State-space Models

MATLAB Course - Part II: Modelling, Simulation and Control

Where c=damping constant, m=mass, k=spring constant, F=u=force

The state-space model for the system is:

[
�̇�1
�̇�2
] = [

0 1

−
𝑘

𝑚
−
𝑐

𝑚

] [
𝑥1
𝑥2
] + [

0
1

𝑚

]𝑢

𝑦 = [1 0] [
𝑥1
𝑥2
]

Define the state-space model above using the ss function in MATLAB.

Set 𝑐 = 1, 𝑚 = 1, 𝑘 = 50 (try also with other values to see what happens).

→Apply a step in F (u) and use the step function in MATLAB to simulate

the result.

→ Find the transfer function from the state-space model

[End of Task]

Task 28: Block Diagram

Find the state-space model from the block diagram below and implement

it in MATLAB.

Set

𝑎1 = 5

65 State-space Models

MATLAB Course - Part II: Modelling, Simulation and Control

𝑎2 = 2

And b=1, c=1

→ Simulate the system using the step function in MATLAB

[End of Task]

8.3 Discrete State-space Models

For Simulation and Control in computers discrete systems are very

important.

Given the continuous linear state space-model:

�̇� = 𝐴𝑥 + 𝐵𝑢

𝑦 = 𝐶𝑥 + 𝐷𝑢

Or given the discrete linear state space-model

𝑥𝑘+1 = Φ𝑥𝑘 + Γ𝑢𝑘

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘

Or it is also normal to use the same notation for discrete systems:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘

But the matrices 𝐴, 𝐵, 𝐶, 𝐷 is of course not the same as in the continuous

system.

MATLAB has several functions for dealing with discrete systems:

Function Description Example

c2d Convert from continuous- to discrete-time models.

You may specify which Discretization method to
use

>>c2d(sys,Ts)

>>c2d(sys,Ts,‘tustin’)

d2c Convert from discrete- to continuous- time models >>

Before you start, you should use the Help system in MATLAB to read more

about these functions. Type “help <functionname>” in the Command

window.

66 State-space Models

MATLAB Course - Part II: Modelling, Simulation and Control

Task 29: Discretization

The state-space model for the system is:

[
�̇�1
�̇�2
] = [

0 1

−
𝑘

𝑚
−
𝑐

𝑚

] [
𝑥1
𝑥2
] + [

0
1

𝑚

]𝑢

𝑦 = [1 0] [
𝑥1
𝑥2
]

Set some arbitrary values for 𝑘, 𝑐 and 𝑚.

Find the discrete State-space model using MATLAB.

[End of Task]

67

9 Frequency Response

In this chapter we assume that you are familiar with basic control theory

and frequency response from previous courses in control theory/process

control/cybernetics. If not, you may skip this chapter.

9.1 Introduction

The frequency response of a system is a frequency dependent function

which expresses how a sinusoidal signal of a given frequency on the

system input is transferred through the system. Each frequency

component is a sinusoidal signal having a certain amplitude and a certain

frequency.

The frequency response is an important tool for analysis and design of

signal filters and for analysis and design of control systems. The frequency

response can be found experimentally or from a transfer function model.

We can find the frequency response of a system by exciting the system

with a sinusoidal signal of amplitude A and frequency ω [rad/s] (Note:

𝜔 = 2𝜋𝑓) and observing the response in the output variable of the system.

The frequency response of a system is defined as the steady-state

response of the system to a sinusoidal input signal. When the system is in

steady-state it differs from the input signal only in amplitude/gain (A) and

phase lag (𝜙).

If we have the input signal:

𝑢(𝑡) = 𝑈 𝑠𝑖𝑛𝜔𝑡

The steady-state output signal will be:

𝑦(𝑡) = 𝑈𝐴⏟
𝑌

 sin (𝜔𝑡 + 𝜙)

Where 𝐴 =
𝑌

𝑈
 is the ratio between the amplitudes of the output signal and

the input signal (in steady-state).

68 Frequency Response

MATLAB Course - Part II: Modelling, Simulation and Control

A and 𝜙 is a function of the frequency ω so we may write 𝐴 = 𝐴(𝜔), 𝜙 = 𝜙(𝜔)

For a transfer function

𝐻(𝑆) =
𝑦(𝑠)

𝑢(𝑠)

We have that:

𝐻(𝑗𝜔) = |𝐻(𝑗𝜔)|𝑒𝑗∠𝐻(𝑗𝜔)

Where 𝐻(𝑗𝜔) is the frequency response of the system, i.e., we may find

the frequency response by setting 𝑠 = 𝑗𝜔 in the transfer function. Bode

diagrams are useful in frequency response analysis. The Bode diagram

consists of 2 diagrams, the Bode magnitude diagram, 𝐴(𝜔) and the Bode

phase diagram, 𝜙(𝜔).

The Gain function:

𝐴(𝜔) = |𝐻(𝑗𝜔)|

The Phase function:

𝜙(𝜔) = ∠𝐻(𝑗𝜔)

The 𝐴(𝜔)-axis is in decibel (dB), where the decibel value of x is calculated

as: 𝒙[𝒅𝑩] = 𝟐𝟎𝒍𝒐𝒈𝟏𝟎𝒙

The 𝜙(𝜔)-axis is in degrees (not radians!)

MATLAB have several functions for frequency response:

Function Description Example

bode Creates the Bode magnitude and Bode phase
plots of a system model. You also can use this

function to return the magnitude and phase
values of a model at frequencies you specify. If
you do not specify an output, this function creates

a plot.

>num=[4];

>den=[2, 1];

>H = tf(num, den)

>bode(H)

bodemag Creates the Bode magnitude plot of a system
model. If you do not specify an output, this

function creates a plot.

>[mag, wout] = bodemag(SysIn)

>[mag, wout] = bodemag(SysIn,

[wmin wmax])

>[mag, wout] = bodemag(SysIn,

wlist)

margin Calculates and/or plots the smallest gain and
phase margins of a single-input single-output

(SISO) system model. The gain margin indicates
where the frequency response crosses at 0

>num = [1]

>den = [1, 5, 6]

>H = tf(num, den)

margin(H)

69 Frequency Response

MATLAB Course - Part II: Modelling, Simulation and Control

decibels. The phase margin indicates where the

frequency response crosses -180 degrees. Use
the margins function to return all gain and phase

margins of a SISO model.

Example:

Here you will learn to plot the frequency response in a Bode diagram.

We have the following transfer function

𝐻(𝑠) =
𝑦(𝑠)

𝑢(𝑠)
=

1

𝑠 + 1

Below we see the script for creating the frequency response of the

system in a bode plot using the bode function in MATLAB. Use the grid

function to apply a grid to the plot.

% Transfer function H=1/(s+1)

num=[1];

den=[1, 1];

H = tf(num, den)

bode (H);

The Bode plot:

70 Frequency Response

MATLAB Course - Part II: Modelling, Simulation and Control

[End of Example]

Before you start, you should use the Help system in MATLAB to read more

about these functions. Type “help <functionname>” in the Command

window.

9.2 Tasks

Task 30: 1. order system

We have the following transfer function:

𝐻(𝑠) =
4

2𝑠 + 1

→ What is the break frequency?

71 Frequency Response

MATLAB Course - Part II: Modelling, Simulation and Control

→ Set up the mathematical expressions for 𝐴(𝜔) and 𝜙(𝜔). Use “Pen &

Paper” for this Assignment.

→ Plot the frequency response of the system in a bode plot using the

bode function in MATLAB. Discuss the results.

→ Find 𝐴(𝜔) and 𝜙(𝜔) for the following frequencies using MATLAB code

(use the bode function):

𝝎 𝑨(𝝎)[𝒅𝑩] 𝝓(𝝎)(𝒅𝒆𝒈𝒓𝒆𝒆𝒔)

0.1

0.16

0.25

0.4

0.625

2.5

Make sure 𝐴(𝜔) is in dB.

→ Find 𝐴(𝜔) and 𝜙(𝜔) for the same frequencies above using the

mathematical expressions for 𝐴(𝜔) and 𝜙(𝜔). Tip: Use a For Loop or

define a vector w=[0.1, 0.16, 0.25, 0.4, 0.625, 2.5].

[End of Task]

Task 31: Bode Diagram

We have the following transfer function:

𝐻(𝑆) =
(5𝑠 + 1)

(2𝑠 + 1)(10𝑠 + 1)

→ What is the break frequencies?

→ Set up the mathematical expressions for 𝐴(𝜔) and 𝜙(𝜔). Use “Pen &

Paper” for this Assignment.

→ Plot the frequency response of the system in a bode plot using the

bode function in MATLAB. Discuss the results.

→ Find 𝐴(𝜔) and 𝜙(𝜔) for some given frequencies using MATLAB code

(use the bode function).

→ Find 𝐴(𝜔) and 𝜙(𝜔) for the same frequencies above using the

mathematical expressions for 𝐴(𝜔) and 𝜙(𝜔). Tip: use a For Loop or

define a vector w=[0.01, 0.1, …].

72 Frequency Response

MATLAB Course - Part II: Modelling, Simulation and Control

[End of Task]

9.3 Frequency response Analysis

Here are some important transfer functions to determine the stability of a

feedback system. Below we see a typical feedback system.

9.3.1 Loop Transfer Function

The Loop transfer function 𝑳(𝒔) is defined as follows:

𝐿(𝑠) = 𝐻𝑐𝐻𝑝𝐻𝑚

Where

𝐻𝑐 is the Controller transfer function

𝐻𝑝 is the Process transfer function

𝐻𝑚 is the Measurement (sensor) transfer function

Note! Another notation for 𝐿 is 𝐻0

9.3.2 Tracking Transfer Function

The Tracking transfer function 𝑻(𝒔) is defined as follows:

𝑇(𝑠) =
𝑦(𝑠)

𝑟(𝑠)
=

𝐻𝑐𝐻𝑝𝐻𝑚

1 + 𝐻𝑐𝐻𝑝𝐻𝑚
=

𝐿(𝑠)

1 + 𝐿(𝑠)
= 1 − 𝑆(𝑠)

The Tracking Property is good if the tracking function T has value equal

to or close to 1:

|𝑇| ≈ 1

73 Frequency Response

MATLAB Course - Part II: Modelling, Simulation and Control

9.3.3 Sensitivity Transfer Function

The Sensitivity transfer function 𝑺(𝒔) is defined as follows:

𝑆(𝑠) =
𝑒(𝑠)

𝑟(𝑠)
=

1

1 + 𝐿(𝑠)
= 1 − 𝑇(𝑠)

The Compensation Property is good if the sensitivity function S has a

small value close to zero:

|𝑆| ≈ 0 𝑜𝑟 |𝑆| ≪ 1

Note!

𝑇(𝑠) + 𝑆(𝑠) =
𝐿(𝑠)

1 + 𝐿(𝑠)
+

1

1 + 𝐿(𝑠)
≡ 1

Frequency Response Analysis of the Tracking Property:

From the equations above we find:

The Tracking Property is good if:

|𝐿(𝑗𝜔)| ≫ 1

The Tracking Property is poor if:

|𝐿(𝑗𝜔)| ≪ 1

If we plot L, T and S in a Bode plot we get a plot like this:

74 Frequency Response

MATLAB Course - Part II: Modelling, Simulation and Control

Where the following Bandwidths 𝜔𝑡 , 𝜔𝑐, 𝜔𝑠 are defined:

𝝎𝒄 – crossover-frequency – the frequency where the gain of the Loop

transfer function 𝐿(𝑗𝜔) has the value:

1 = 0𝑑𝐵

𝝎𝒕 – the frequency where the gain of the Tracking function 𝑇(𝑗𝜔) has the

value:

1

√2
≈ 0.71 = −3𝑑𝐵

𝝎𝒔 - the frequency where the gain of the Sensitivity transfer function

𝑆(𝑗𝜔) has the value:

1 −
1

√2
≈ 0.29 = −11𝑑𝐵

Task 32: Frequency Response Analysis

Given the following system:

Process transfer function:

𝐻𝑝 =
𝐾

𝑠

75 Frequency Response

MATLAB Course - Part II: Modelling, Simulation and Control

Where 𝐾 =
𝐾𝑠

𝜚𝐴
, where 𝐾𝑠 = 0,556, 𝐴 = 13,4, 𝜚 = 145

Measurement (sensor) transfer function:

𝐻𝑚 = 𝐾𝑚

Where 𝐾𝑚 = 1.

Controller transfer function (PI Controller):

𝐻𝑐 = 𝐾𝑝 +
𝐾𝑝

𝑇𝑖𝑠

Set Kp = 1,5 og Ti = 1000 sec.

→ Define the Loop transfer function 𝑳(𝒔), Sensitivity transfer

function 𝑺(𝒔) and Tracking transfer function 𝑻(𝒔) and in MATLAB.

→ Plot the Loop transfer function 𝐿(𝑠), the Tracking transfer function 𝑇(𝑠)

and the Sensitivity transfer function 𝑆(𝑠) in the same Bode diagram. Use,

e.g., the bodemag function in MATLAB.

→ Find the bandwidths 𝜔𝑡 , 𝜔𝑐, 𝜔𝑠 from the plot above.

→ Plot the step response for the Tracking transfer function 𝑇(𝑠)

[End of Task]

9.4 Stability Analysis of Feedback

Systems

Gain Margin (GM) and Phase Margin (PM) are important design criteria for

analysis of feedback control systems.

A dynamic system has one of the following stability properties:

• Asymptotically stable system

• Marginally stable system

76 Frequency Response

MATLAB Course - Part II: Modelling, Simulation and Control

• Unstable system

The Gain Margin – GM (Δ𝐾) is how much the loop gain can increase

before the system become unstable.

The Phase Margin - PM (𝜑) is how much the phase lag function of the

loop can be reduced before the loop becomes unstable.

Where:

• 𝝎𝟏𝟖𝟎 (gain margin frequency - gmf) is the gain margin

frequency/frequencies, in radians/second. A gain margin frequency

indicates where the model phase crosses -180 degrees.

• GM (Δ𝐾) is the gain margin(s) of the system.

• 𝝎𝒄 (phase margin frequency - pmf) returns the phase margin

frequency/frequencies, in radians/second. A phase margin frequency

indicates where the model magnitude crosses 0 decibels.

• PM (𝜑) is the phase margin(s) of the system.

Note! 𝝎𝟏𝟖𝟎 and 𝝎𝒄 are called the crossover-frequencies

The definitions are as follows:

Gain Crossover-frequency - 𝝎𝒄 :

 |𝐿(𝑗𝜔𝑐)| = 1 = 0𝑑𝐵

Phase Crossover-frequency - 𝝎𝟏𝟖𝟎 :

 ∠𝐿(𝑗𝜔180) = −180
𝑜

77 Frequency Response

MATLAB Course - Part II: Modelling, Simulation and Control

Gain Margin - GM (𝚫𝑲):

𝐺𝑀 =
1

|𝐿(𝑗𝜔180)|

or:

 𝐺𝑀 [𝑑𝐵] = −|𝐿(𝑗𝜔180)| [𝑑𝐵]

Phase margin PM (𝝋):

𝑃𝑀 = 180𝑜 + ∠𝐿(𝑗𝜔𝑐)

We have that:

• Asymptotically stable system: 𝝎𝒄 < 𝝎𝟏𝟖𝟎

• Marginally stable system: 𝝎𝒄 = 𝝎𝟏𝟖𝟎

• Unstable system: 𝝎𝒄 > 𝝎𝟏𝟖𝟎

We use the following functions in MATLAB: tf, bode, margins and

margin.

Task 33: Stability Analysis

Given the following system:

𝐻(𝑆) =
1

𝑠(𝑠 + 1)2

We will find the crossover-frequencies for the system using MATLAB.

We will also find also the gain margins and phase margins for the

system.

Plot a bode diagram where the crossover-frequencies, GM and PM are

illustrated. Tip! Use the margin function in MATLAB.

[End of Task]

78

10 Additional Tasks

If you have time left or need more practice, solve the tasks below. Its

highly recommended to solve these tasks as well, since some of these will

most likely be part of the final test.

Task 34: ODE Solvers

Use the ode45 function to solve and plot the results of the following

differential equation in the interval [𝑡0, 𝑡𝑓]:

𝟑𝒘′ +
𝟏

𝟏 + 𝒕𝟐
𝒘 = 𝒄𝒐𝒔𝒕, 𝑡0 = 0, 𝑡𝑓 = 5,𝑤(𝑡0) = 1

[End of Task]

Task 35: Mass-spring-damper system

Given a mass-spring-damper system:

Where c=damping constant, m=mass, k=spring constant, F=u=force

The state-space model for the system is:

[
�̇�1
�̇�2
] = [

0 1

−
𝑘

𝑚
−
𝑐

𝑚

] [
𝑥1
𝑥2
] + [

0
1

𝑚

]𝑢

Set 𝑐 = 1,𝑚 = 1, 𝑘 = 50.

79 Additional Tasks

MATLAB Course - Part II: Modelling, Simulation and Control

→ Solve and Plot the system using one or more of the built-in solvers

(use, e.g., ode32) in MATLAB. Apply a step in 𝐹 (which is the control

signal 𝑢).

[End of Task]

Task 36: Numerical Integration

Given a piston cylinder device:

→ Find the work produced in a piston cylinder device by solving the

equation:

𝑊 = ∫ 𝑃𝑑𝑉
𝑉2

𝑉1

Assume the ideal gas low applies:

𝑃𝑉 = 𝑛𝑅𝑇

where

• P= pressure

• V=volume, m3

• n=number of moles, kmol

• R=universal gas constant, 8.314 kJ/kmol K

• T=Temperature, K

We also assume that the piston contains 1 mol of gas at 300K and that

the temperature is constant during the process. 𝑉1 = 1𝑚
3, 𝑉2 = 5𝑚

3

80 Additional Tasks

MATLAB Course - Part II: Modelling, Simulation and Control

Use both the quad and quadl functions. Compare with the exact solution

by solving the integral analytically.

[End of Task]

Task 37: State-space model

The following model of a pendulum is given:

�̇�1 = 𝑥2

�̇�2 = −
𝑔

𝑟
𝑥1 −

𝑏

𝑚𝑟2
𝑥2

where m is the mass, r is the length of the arm of the pendulum, g is the

gravity, b is a friction coefficient.

→ Define the state-space model in MATLAB

→ Solve the differential equations in MATLAB and plot the results.

Use the following values 𝑔 = 9.81,𝑚 = 8, 𝑟 = 5, 𝑏 = 10

[End of Task]

Task 38: lsim

Given a mass-spring-damper system:

Where c=damping constant, m=mass, k=spring constant, F=u=force

The state-space model for the system is:

[
�̇�1
�̇�2
] = [

0 1

−
𝑘

𝑚
−
𝑐

𝑚

] [
𝑥1
𝑥2
] + [

0
1

𝑚

]𝑢

81 Additional Tasks

MATLAB Course - Part II: Modelling, Simulation and Control

𝑦 = [1 0] [
𝑥1
𝑥2
]

→ Simulate the system using the lsim function in the Control System

Toolbox.

Set c=1, m=1, k=50.

[End of Task]

Task 39: Integration of Numeric Data

Given the following plot of some given velocity data

First, plot the same plot as shown above using the following data:

t 0 1 2 3 4 5 6 7 8 9 10 11 12

v 0 .45 1.7
9

4.0
2

7.1
5

11.1
8

16.0
9

21.
9

29.0
5

29.0
5

29.0
5

29.0
5

29.0
5

t 13 14 15 16 17 18 19 20 21 22 23 24

v 22.4

2

17.

9

17.

9

17.

9

17.

9

14.3

4

11.0

1

8.9 6.54 2.03 0.55 0

Where t is time in seconds, while v is the velocity in m/s.

You could put the data into a text file and import it like this:

velocitydata = importdata('velocitydata.txt');

t = velocitydata(:,1);

v = velocitydata(:,2);

82 Additional Tasks

MATLAB Course - Part II: Modelling, Simulation and Control

Then calculate the Total Distance Traveled.

Tip! The Total Distance is the area under the curve (the integral) given

above. Use e.g., the trapz() function.

Finally, calculate and plot the Cumulative Distance Traveled. Tip! Use

the cumtrapz() function.

[End of Task]

83

Appendix A – MATLAB

Functions

Numerical Techniques

Here are some descriptions for the most used MATLAB functions for

Numerical Techniques.

Solving Ordinary Differential Equations

MATLAB offers lots of ode solvers, e.g.:

Function Description Example

ode23

ode45

Interpolation

MATLAB offers functions for interpolation, e.g.:

Function Description Example

interp1

Curve Fitting

Here are some of the functions available in MATLAB used for curve fitting:

Function Description Example

polyfit P = POLYFIT(X,Y,N) finds the coefficients of a

polynomial P(X) of degree N that fits the data Y
best in a least-squares sense. P is a row vector

of length N+1 containing the polynomial
coefficients in descending powers, P(1)*X^N +
P(2)*X^(N-1) +...+ P(N)*X + P(N+1).

>>polyfit(x,y,1)

84 Appendix A – MATLAB Functions

MATLAB Course - Part II: Modelling, Simulation and Control

polyval Evaluate polynomial. Y = POLYVAL(P,X) returns

the value of a polynomial P evaluated at X. P is a
vector of length N+1 whose elements are the

coefficients of the polynomial in descending
powers. Y = P(1)*X^N + P(2)*X^(N-1) + ... +
P(N)*X + P(N+1)

Numerical Differentiation

MATLAB offers functions for numerical differentiation, e.g.:

Function Description Example

diff Difference and approximate derivative. DIFF(X),

for a vector X, is [X(2)-X(1) X(3)-X(2) ... X(n)-
X(n-1)].

>> dydx_num=diff(y)./diff(x);

polyder Differentiate polynomial. POLYDER(P) returns the

derivative of the polynomial whose coefficients are
the elements of vector P.
POLYDER(A,B) returns the derivative of

polynomial A*B.

>>p=[1,2,3];

>>polyder(p)

Numerical Integration

MATLAB offers functions for numerical integration, such as:

Function Description Example

diff Difference and approximate derivative. DIFF(X),
for a vector X, is [X(2)-X(1) X(3)-X(2) ... X(n)-

X(n-1)].

>> dydx_num=diff(y)./diff(x);

trapz Computes the approximate integral using the
trapezoidal method

>> I = trapz(x,y)

quad Numerically evaluate integral, adaptive Simpson

quadrature.
Q = QUAD(FUN,A,B) tries to approximate the

integral of calar-valued function FUN from A to B.
FUN is a function handle. The function Y=FUN(X)
should accept a vector argument X and return a

vector result Y, the integrand evaluated at each
element of X. Uses adaptive Simpson quadrature
method

>>

quadl Same as quad, but uses adaptive Lobatto
quadrature method

>>

polyint Integrate polynomial analytically. POLYINT(P,K)

returns a polynomial representing the integral of
polynomial P, using a scalar constant of
integration K.

>> I = polyint(p)

integral Numerically integrates function fun from xmin to

xmax

>> I = integral(fun,xmin,xmax)

Optimization

MATLAB offers functions for local minimum, such as:

85 Appendix A – MATLAB Functions

MATLAB Course - Part II: Modelling, Simulation and Control

Function Description Example

fminbnd X = FMINBND(FUN,x1,x2) attempts to find a

local minimizer X of the function FUN in the
interval x1 < X < x2. FUN is a function handle.
FUN accepts scalar input X and returns a scalar

function value F evaluated at X. FUN can be
specified using @.
FMINBND is a single-variable bounded

nonlinear function minimization.

>> x = fminbnd(@cos,3,4)

x =

 3.1416

fminsearch X = FMINSEARCH(FUN,X0) starts at X0 and
attempts to find a local minimizer X of the

function FUN. FUN is a function handle. FUN
accepts input X and returns a scalar function

value F evaluated at X. X0 can be a scalar,
vector or matrix. FUN can be specified using
@.

FMINSEARCH is a multidimensional
unconstrained nonlinear function minimization.

>> x = fminsearch(@sin,3)

x =

 4.7124

Control and Simulation

Here are some descriptions for the most used MATLAB functions for

Control and Simulation.

Function Description Example

plot Generates a plot. plot(y) plots the columns of y

against the indexes of the columns.

>X = [0:0.01:1];

>Y = X.*X;

>plot(X, Y)

tf Creates system model in transfer function form.

You also can use this function to state-space
models to transfer function form.

>num=[1];

>den=[1, 1, 1];

>H = tf(num, den)

pole Returns the locations of the closed-loop poles of a
system model.

>num=[1]

>den=[1,1]

>H=tf(num,den)

>poles(H)

step Creates a step response plot of the system
model. You also can use this function to return

the step response of the model outputs. If the
model is in state-space form, you also can use
this function to return the step response of the

model states. This function assumes the initial
model states are zero. If you do not specify an

output, this function creates a plot.

>num=[1,1];

>den=[1,-1,3];

>H=tf(num,den);

>t=[0:0.01:10];

>step(H,t);

lsim Creates the linear simulation plot of a system
model. This function calculates the output of a

system model when a set of inputs excite the
model, using discrete simulation. If you do not
specify an output, this function creates a plot.

>t = [0:0.1:10]

>u = sin(0.1*pi*t)'

>lsim(SysIn, u, t)

conv Computes the convolution of two vectors or

matrices.

>C1 = [1, 2, 3];

>C2 = [3, 4];

>C = conv(C1, C2)

series Connects two system models in series to produce

a model SysSer with input and output
connections you specify

>Hseries = series(H1,H2)

feedback Connects two system models together to produce

a closed-loop model using negative or positive
feedback connections

>SysClosed = feedback(SysIn_1,

SysIn_2)

86 Appendix A – MATLAB Functions

MATLAB Course - Part II: Modelling, Simulation and Control

ss Constructs a model in state-space form. You also

can use this function to convert transfer function
models to state-space form.

>A = eye(2)

>B = [0; 1]

>C = B'

>SysOutSS = ss(A, B, C)

bode Creates the Bode magnitude and Bode phase

plots of a system model. You also can use this
function to return the magnitude and phase
values of a model at frequencies you specify. If

you do not specify an output, this function
creates a plot.

>num=[4];

>den=[2, 1];

>H = tf(num, den)

>bode(H)

bodemag Creates the Bode magnitude plot of a system

model. If you do not specify an output, this
function creates a plot.

>[mag, wout] = bodemag(SysIn)

>[mag, wout] = bodemag(SysIn,

[wmin wmax])

>[mag, wout] = bodemag(SysIn,

wlist)

margin Calculates and/or plots the smallest gain and

phase margins of a single-input single-output
(SISO) system model. The gain margin indicates
where the frequency response crosses at 0

decibels. The phase margin indicates where the
frequency response crosses -180 degrees. Use

the margins function to return all gain and phase
margins of a SISO model.

>num = [1]

>den = [1, 5, 6]

>H = tf(num, den)

margin(H)

margins Calculates all gain and phase margins of a single-

input single-output (SISO) system model. The
gain margins indicate where the frequency
response crosses at 0 decibels. The phase

margins indicate where the frequency response
crosses -180 degrees. Use the margin function to
return only the smallest gain and phase margins

of a SISO model.

>[gmf, gm, pmf, pm] = margins(H)

c2d Convert from continuous- to discrete-time models

d2c Convert from discrete- to continuous-time models

Hans-Petter Halvorsen

E-mail: hans.p.halvorsen@usn.no

Blog: http://www.halvorsen.blog

University of South-Eastern Norway

www.usn.no

mailto:hans.p.halvorsen@usn.no
http://www.halvorsen.blog/
http://www.usn.no/

Modelling, Simulation and
Control in MATLAB

	Preface
	Table of Contents
	1 Introduction
	2 Differential Equations and ODE Solvers
	2.1 ODE Solvers in MATLAB
	Task 1: Bacteria Population
	2.1.1 Passing Arguments to the function
	Task 2: Passing Parameters to the model
	Task 3: ODE Solvers

	2.1.2 Multiple 1. order Differential Equations
	2.1.3 Higher order differential equations
	Task 4: 2. order differential equation

	3 Discrete Systems
	3.1 Discretization
	Task 5: Discrete Simulation
	Task 6: Discrete Simulation – Bacteria Population
	Task 7: Simulation with 2 variables

	3.2 Code Optimization

	4 Numerical Techniques
	4.1 Interpolation
	Task 8: Interpolation

	4.2 Curve Fitting
	4.2.1 Linear Regression
	Task 9: Linear Regression

	4.2.2 Polynomial Regression
	Task 10: Polynomial Regression
	Task 11: Model fitting

	4.3 Numerical Differentiation
	Task 12: Numerical Differentiation
	4.3.1 Differentiation on Polynomials
	Task 13: Differentiation on Polynomials
	Task 14: Differentiation on Polynomials

	4.4 Numerical Integration
	Task 15: Numerical Integration
	4.4.1 Integration on Polynomials
	Task 16: Integration on Polynomials

	5 Optimization
	Task 17: Optimization
	Task 18: Optimization - Rosenbrock's Banana Function

	6 Control System Toolbox
	7 Transfer Functions
	7.1 Introduction
	Task 19: Transfer function

	7.2 Second order Transfer Function
	Task 20: 2.order Transfer function
	Task 21: Time Response

	7.3 Analysis of Standard Functions
	Task 22: Integrator
	Task 23: 1. order system
	Task 24: 2. order system
	Task 25: 2. order system – Special Case

	8 State-space Models
	8.1 Introduction
	8.2 Tasks
	Task 26: State-space model
	Task 27: Mass-spring-damper system
	Task 28: Block Diagram

	8.3 Discrete State-space Models
	Task 29: Discretization

	9 Frequency Response
	9.1 Introduction
	9.2 Tasks
	Task 30: 1. order system
	Task 31: Bode Diagram

	9.3 Frequency response Analysis
	9.3.1 Loop Transfer Function
	9.3.2 Tracking Transfer Function
	9.3.3 Sensitivity Transfer Function
	Task 32: Frequency Response Analysis

	9.4 Stability Analysis of Feedback Systems
	Task 33: Stability Analysis

	10 Additional Tasks
	Task 34: ODE Solvers
	Task 35: Mass-spring-damper system
	Task 36: Numerical Integration
	Task 37: State-space model
	Task 38: lsim
	Task 39: Integration of Numeric Data

	Appendix A – MATLAB Functions
	Numerical Techniques
	Solving Ordinary Differential Equations
	Interpolation
	Curve Fitting
	Numerical Differentiation
	Numerical Integration

	Optimization
	Control and Simulation

